Curve name | $X_{225e}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{225}$ | ||||||||||||
Curves that $X_{225e}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{225e}$ | |||||||||||||
Curves that minimally cover $X_{225e}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1811939328t^{16} - 27179089920t^{14} - 15288238080t^{12} - 2972712960t^{10} - 483950592t^{8} - 46448640t^{6} - 3732480t^{4} - 103680t^{2} - 108\] \[B(t) = 29686813949952t^{24} - 935134639423488t^{22} - 1928715193810944t^{20} - 891300203200512t^{18} - 241328575217664t^{16} - 44291044933632t^{14} - 6592288260096t^{12} - 692047577088t^{10} - 58918109184t^{8} - 3400040448t^{6} - 114960384t^{4} - 870912t^{2} + 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 138241x - 19829665$, with conductor $960$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |