Curve name | $X_{225}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{85}$ | ||||||||||||
Curves that $X_{225}$ minimally covers | $X_{85}$, $X_{118}$, $X_{121}$ | ||||||||||||
Curves that minimally cover $X_{225}$ | $X_{471}$, $X_{482}$, $X_{495}$, $X_{497}$, $X_{225a}$, $X_{225b}$, $X_{225c}$, $X_{225d}$, $X_{225e}$, $X_{225f}$, $X_{225g}$, $X_{225h}$, $X_{225i}$, $X_{225j}$, $X_{225k}$, $X_{225l}$ | ||||||||||||
Curves that minimally cover $X_{225}$ and have infinitely many rational points. | $X_{225a}$, $X_{225b}$, $X_{225c}$, $X_{225d}$, $X_{225e}$, $X_{225f}$, $X_{225g}$, $X_{225h}$, $X_{225i}$, $X_{225j}$, $X_{225k}$, $X_{225l}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{225}) = \mathbb{Q}(f_{225}), f_{85} = \frac{f_{225}}{f_{225}^{2} + \frac{1}{8}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 105841x + 13244636$, with conductor $735$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |