Curve name | $X_{226h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 9 & 9 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 13 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{226}$ | ||||||||||||
Curves that $X_{226h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{226h}$ | |||||||||||||
Curves that minimally cover $X_{226h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -3564t^{16} - 31104t^{15} - 74304t^{14} + 152064t^{13} + 1069632t^{12} + 428544t^{11} - 13512960t^{10} - 66244608t^{9} - 181878912t^{8} - 342337536t^{7} - 464624640t^{6} - 459399168t^{5} - 327932928t^{4} - 164339712t^{3} - 54521856t^{2} - 10616832t - 912384\] \[B(t) = -81648t^{24} - 1057536t^{23} - 4510080t^{22} + 3760128t^{21} + 127516032t^{20} + 694987776t^{19} + 2332786176t^{18} + 5625262080t^{17} + 7988150016t^{16} - 11852144640t^{15} - 135410724864t^{14} - 552887451648t^{13} - 1524493135872t^{12} - 3159826661376t^{11} - 5125165498368t^{10} - 6628233314304t^{9} - 6886603100160t^{8} - 5744592617472t^{7} - 3816882929664t^{6} - 1988744970240t^{5} - 792581013504t^{4} - 232459075584t^{3} - 47106883584t^{2} - 5860491264t - 334430208\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 25738028x - 50255511152$, with conductor $168640$ | ||||||||||||
Generic density of odd order reductions | $13411/86016$ |