Curve name | $X_{226}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 9 & 9 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{79}$ | ||||||||||||
Curves that $X_{226}$ minimally covers | $X_{79}$ | ||||||||||||
Curves that minimally cover $X_{226}$ | $X_{226a}$, $X_{226b}$, $X_{226c}$, $X_{226d}$, $X_{226e}$, $X_{226f}$, $X_{226g}$, $X_{226h}$ | ||||||||||||
Curves that minimally cover $X_{226}$ and have infinitely many rational points. | $X_{226a}$, $X_{226b}$, $X_{226c}$, $X_{226d}$, $X_{226e}$, $X_{226f}$, $X_{226g}$, $X_{226h}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{226}) = \mathbb{Q}(f_{226}), f_{79} = \frac{4f_{226} + 4}{f_{226}^{2} - 2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 55862675x + 151569825750$, with conductor $421600$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |