Curve name | $X_{227a}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 7 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{227}$ | |||||||||||||||
Curves that $X_{227a}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{227a}$ | ||||||||||||||||
Curves that minimally cover $X_{227a}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{24} + 13589544960t^{22} - 15231614976t^{20} + 4246732800t^{18} - 26542080t^{16} - 318504960t^{14} + 122535936t^{12} - 19906560t^{10} - 103680t^{8} + 1036800t^{6} - 232416t^{4} + 12960t^{2} - 27\] \[B(t) = 3710851743744t^{36} + 233783659855872t^{34} - 965053381607424t^{32} + 847465766977536t^{30} - 301796614471680t^{28} + 12785043898368t^{26} + 26457938067456t^{24} - 11757674299392t^{22} + 2582353281024t^{20} - 161397080064t^{16} + 45928415232t^{14} - 6459457536t^{12} - 195084288t^{10} + 287815680t^{8} - 50512896t^{6} + 3595104t^{4} - 54432t^{2} - 54\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + 583749x + 55853398$, with conductor $6150$ | |||||||||||||||
Generic density of odd order reductions | $73/672$ |