Curve name | $X_{227c}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 7 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{227}$ | |||||||||||||||
Curves that $X_{227c}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{227c}$ | ||||||||||||||||
Curves that minimally cover $X_{227c}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -463856467968t^{32} + 13915694039040t^{30} - 15655155793920t^{28} + 6088116142080t^{26} - 1978637746176t^{24} + 271790899200t^{22} + 61152952320t^{20} - 44166021120t^{18} + 15472263168t^{16} - 2760376320t^{14} + 238878720t^{12} + 66355200t^{10} - 30191616t^{8} + 5806080t^{6} - 933120t^{4} + 51840t^{2} - 108\] \[B(t) = 121597189939003392t^{48} + 7660622966157213696t^{46} - 31600069735398506496t^{44} + 29206125058474377216t^{42} - 15817134472534425600t^{40} + 5715542916156358656t^{38} - 1357815496442904576t^{36} + 20572962067316736t^{34} + 123565796789059584t^{32} - 60549967902670848t^{30} + 18322794341203968t^{28} - 2907684269457408t^{26} + 181730266841088t^{22} - 71573415395328t^{20} + 14782707007488t^{18} - 1885464428544t^{16} - 19619905536t^{14} + 80932110336t^{12} - 21292056576t^{10} + 3682713600t^{8} - 425005056t^{6} + 28740096t^{4} - 435456t^{2} - 432\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 + 981282875x + 3846528212125$, with conductor $252150$ | |||||||||||||||
Generic density of odd order reductions | $51/448$ |