Curve name | $X_{227f}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{227}$ | ||||||||||||
Curves that $X_{227f}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{227f}$ | |||||||||||||
Curves that minimally cover $X_{227f}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{24} + 13589544960t^{22} - 15344861184t^{20} + 7644119040t^{18} - 3848601600t^{16} + 1167851520t^{14} - 361414656t^{12} + 72990720t^{10} - 15033600t^{8} + 1866240t^{6} - 234144t^{4} + 12960t^{2} - 27\] \[B(t) = 3710851743744t^{36} + 233783659855872t^{34} - 963661812203520t^{32} + 935134639423488t^{30} - 663430713311232t^{28} + 347022620098560t^{26} - 154536681406464t^{24} + 54793045278720t^{22} - 17665389232128t^{20} + 4587490639872t^{18} - 1104086827008t^{16} + 214035333120t^{14} - 37728681984t^{12} + 5295144960t^{10} - 632696832t^{8} + 55738368t^{6} - 3589920t^{4} + 54432t^{2} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + 1892944x - 4740612030$, with conductor $8670$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |