Curve name | $X_{84n}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{84}$ | |||||||||
Curves that $X_{84n}$ minimally covers | ||||||||||
Curves that minimally cover $X_{84n}$ | ||||||||||
Curves that minimally cover $X_{84n}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{12} - 864t^{10} - 1080t^{8} + 5616t^{6} + 16308t^{4} + 11664t^{2} - 432\] \[B(t) = -432t^{18} - 5184t^{16} - 40176t^{14} - 211680t^{12} - 659664t^{10} - 1109376t^{8} - 825552t^{6} + 2592t^{4} + 233280t^{2} + 3456\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 723x - 64078$, with conductor $720$ | |||||||||
Generic density of odd order reductions | $635/5376$ |