Curve name | $X_{228b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{228}$ | ||||||||||||
Curves that $X_{228b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{228b}$ | |||||||||||||
Curves that minimally cover $X_{228b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 54t^{16} + 2592t^{15} + 50112t^{14} + 518400t^{13} + 2985984t^{12} + 7133184t^{11} - 24440832t^{10} - 272056320t^{9} - 1063895040t^{8} - 2176450560t^{7} - 1564213248t^{6} + 3652190208t^{5} + 12230590464t^{4} + 16986931200t^{3} + 13136560128t^{2} + 5435817984t + 905969664\] \[B(t) = 189t^{24} + 7776t^{23} + 111456t^{22} - 62208t^{21} - 26490240t^{20} - 470292480t^{19} - 4693248000t^{18} - 30986551296t^{17} - 138235465728t^{16} - 381505241088t^{15} - 330926653440t^{14} + 2136786075648t^{13} + 10246545211392t^{12} + 17094288605184t^{11} - 21179305820160t^{10} - 195330683437056t^{9} - 566212467621888t^{8} - 1015367312867328t^{7} - 1230306803712000t^{6} - 986274815016960t^{5} - 444432478371840t^{4} - 8349416423424t^{3} + 119674968735744t^{2} + 66795331387392t + 12987981103104\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + x$, with conductor $24$ | ||||||||||||
Generic density of odd order reductions | $215/2688$ |