Curve name | $X_{228}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{84}$ | ||||||||||||
Curves that $X_{228}$ minimally covers | $X_{84}$, $X_{117}$, $X_{122}$ | ||||||||||||
Curves that minimally cover $X_{228}$ | $X_{466}$, $X_{487}$, $X_{228a}$, $X_{228b}$, $X_{228c}$, $X_{228d}$, $X_{228e}$, $X_{228f}$, $X_{228g}$, $X_{228h}$ | ||||||||||||
Curves that minimally cover $X_{228}$ and have infinitely many rational points. | $X_{228a}$, $X_{228b}$, $X_{228c}$, $X_{228d}$, $X_{228e}$, $X_{228f}$, $X_{228g}$, $X_{228h}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{228}) = \mathbb{Q}(f_{228}), f_{84} = \frac{f_{228}^{2} - 8}{f_{228}^{2} + 8f_{228} + 8}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 17x + 38$, with conductor $600$ | ||||||||||||
Generic density of odd order reductions | $635/5376$ |