| Curve name | 
$X_{228}$ | 
| Index | 
$48$ | 
| Level | 
$16$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
Yes | 
| Generating matrices | 
$
\left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 8 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{84}$ | 
| Curves that $X_{228}$ minimally covers  | 
$X_{84}$, $X_{117}$, $X_{122}$ | 
| Curves that minimally cover $X_{228}$ | 
$X_{466}$, $X_{487}$, $X_{228a}$, $X_{228b}$, $X_{228c}$, $X_{228d}$, $X_{228e}$, $X_{228f}$, $X_{228g}$, $X_{228h}$ | 
| Curves that minimally cover $X_{228}$ and have infinitely many rational 
points. | 
$X_{228a}$, $X_{228b}$, $X_{228c}$, $X_{228d}$, $X_{228e}$, $X_{228f}$, $X_{228g}$, $X_{228h}$ | 
| Model | 
\[\mathbb{P}^{1}, \mathbb{Q}(X_{228}) = \mathbb{Q}(f_{228}), f_{84} = 
\frac{f_{228}^{2} - 8}{f_{228}^{2} + 8f_{228} + 8}\] | 
| Info about rational points | 
None | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 = x^3 + x^2 + 17x + 38$, with conductor $600$ | 
| Generic density of odd order reductions | 
$635/5376$ |