Curve name | $X_{228c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{228}$ | ||||||||||||
Curves that $X_{228c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{228c}$ | |||||||||||||
Curves that minimally cover $X_{228c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 216t^{16} + 10368t^{15} + 200448t^{14} + 2073600t^{13} + 11943936t^{12} + 28532736t^{11} - 97763328t^{10} - 1088225280t^{9} - 4255580160t^{8} - 8705802240t^{7} - 6256852992t^{6} + 14608760832t^{5} + 48922361856t^{4} + 67947724800t^{3} + 52546240512t^{2} + 21743271936t + 3623878656\] \[B(t) = -1512t^{24} - 62208t^{23} - 891648t^{22} + 497664t^{21} + 211921920t^{20} + 3762339840t^{19} + 37545984000t^{18} + 247892410368t^{17} + 1105883725824t^{16} + 3052041928704t^{15} + 2647413227520t^{14} - 17094288605184t^{13} - 81972361691136t^{12} - 136754308841472t^{11} + 169434446561280t^{10} + 1562645467496448t^{9} + 4529699740975104t^{8} + 8122938502938624t^{7} + 9842454429696000t^{6} + 7890198520135680t^{5} + 3555459826974720t^{4} + 66795331387392t^{3} - 957399749885952t^{2} - 534362651099136t - 103903848824832\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 3x - 3$, with conductor $192$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |