Curve name | $X_{230c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{230}$ | ||||||||||||
Curves that $X_{230c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{230c}$ | |||||||||||||
Curves that minimally cover $X_{230c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} + 4423680t^{22} - 16146432t^{20} + 24993792t^{18} - 12358656t^{16} - 3870720t^{14} + 3787776t^{12} - 967680t^{10} - 772416t^{8} + 390528t^{6} - 63072t^{4} + 4320t^{2} - 108\] \[B(t) = 113246208t^{36} - 1698693120t^{34} + 10446962688t^{32} - 33520877568t^{30} + 58350108672t^{28} - 49347035136t^{26} + 7679508480t^{24} + 15967715328t^{22} - 9807298560t^{20} + 2416214016t^{18} - 2451824640t^{16} + 997982208t^{14} + 119992320t^{12} - 192761856t^{10} + 56982528t^{8} - 8183808t^{6} + 637632t^{4} - 25920t^{2} + 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 12609x - 1199295$, with conductor $9408$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |