Curve name | $X_{231}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 12 & 15 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 12 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{94}$ | ||||||||||||
Curves that $X_{231}$ minimally covers | $X_{94}$, $X_{110}$, $X_{112}$ | ||||||||||||
Curves that minimally cover $X_{231}$ | $X_{231a}$, $X_{231b}$, $X_{231c}$, $X_{231d}$ | ||||||||||||
Curves that minimally cover $X_{231}$ and have infinitely many rational points. | $X_{231a}$, $X_{231b}$, $X_{231c}$, $X_{231d}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{231}) = \mathbb{Q}(f_{231}), f_{94} = \frac{8f_{231} + 8}{f_{231}^{2} - 2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 24009700x + 65021152000$, with conductor $421600$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |