Curve name | $X_{231a}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 4 & 13 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 12 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{231}$ | ||||||||||||
Curves that $X_{231a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{231a}$ | |||||||||||||
Curves that minimally cover $X_{231a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 81t^{16} + 1296t^{15} + 3456t^{14} - 42336t^{13} - 323568t^{12} - 737856t^{11} + 483840t^{10} + 5864832t^{9} + 12559968t^{8} + 11729664t^{7} + 1935360t^{6} - 5902848t^{5} - 5177088t^{4} - 1354752t^{3} + 221184t^{2} + 165888t + 20736\] \[B(t) = 3888t^{23} + 89424t^{22} + 766368t^{21} + 2322432t^{20} - 6640704t^{19} - 71475264t^{18} - 165214080t^{17} + 315850752t^{16} + 2844495360t^{15} + 7593896448t^{14} + 9354175488t^{13} - 18708350976t^{11} - 30375585792t^{10} - 22755962880t^{9} - 5053612032t^{8} + 5286850560t^{7} + 4574416896t^{6} + 850010112t^{5} - 594542592t^{4} - 392380416t^{3} - 91570176t^{2} - 7962624t\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 240097x - 65021152$, with conductor $168640$ | ||||||||||||
Generic density of odd order reductions | $13411/86016$ |