Curve name | $X_{233f}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{233}$ | ||||||||||||
Curves that $X_{233f}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{233f}$ | |||||||||||||
Curves that minimally cover $X_{233f}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1855425871872t^{24} - 60301340835840t^{22} - 192094559797248t^{20} - 249511293222912t^{18} - 162516009222144t^{16} - 55402309877760t^{14} - 9685466873856t^{12} - 865661091840t^{10} - 39676760064t^{8} - 951810048t^{6} - 11449728t^{4} - 56160t^{2} - 27\] \[B(t) = -972777519512027136t^{36} + 57637068031087607808t^{34} + 461689330549653504000t^{32} + 1353346324723623002112t^{30} + 2097052787973449318400t^{28} + 1950740731684831887360t^{26} + 1148018767415186817024t^{24} + 434953987064309219328t^{22} + 106067792243504185344t^{20} + 16572776343763156992t^{18} + 1657309253804752896t^{16} + 106189938248122368t^{14} + 4379344052944896t^{12} + 116273208360960t^{10} + 1953032601600t^{8} + 19693780992t^{6} + 104976000t^{4} + 204768t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 128288352x + 559236806388$, with conductor $13872$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |