Curve name | $X_{233}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{78}$ | ||||||||||||
Curves that $X_{233}$ minimally covers | $X_{78}$, $X_{119}$, $X_{122}$ | ||||||||||||
Curves that minimally cover $X_{233}$ | $X_{472}$, $X_{473}$, $X_{233a}$, $X_{233b}$, $X_{233c}$, $X_{233d}$, $X_{233e}$, $X_{233f}$, $X_{233g}$, $X_{233h}$ | ||||||||||||
Curves that minimally cover $X_{233}$ and have infinitely many rational points. | $X_{233a}$, $X_{233b}$, $X_{233c}$, $X_{233d}$, $X_{233e}$, $X_{233f}$, $X_{233g}$, $X_{233h}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{233}) = \mathbb{Q}(f_{233}), f_{78} = \frac{f_{233}}{f_{233}^{2} + \frac{1}{8}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 249696x + 48087270$, with conductor $306$ | ||||||||||||
Generic density of odd order reductions | $635/5376$ |