Curve name | $X_{239d}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 29 & 29 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 15 & 15 \\ 0 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{239}$ | |||||||||||||||
Curves that $X_{239d}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{239d}$ | ||||||||||||||||
Curves that minimally cover $X_{239d}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -189t^{32} - 3456t^{31} - 9504t^{30} + 314496t^{29} + 4009824t^{28} + 16740864t^{27} - 57891456t^{26} - 1159156224t^{25} - 7549260480t^{24} - 30445811712t^{23} - 86535959040t^{22} - 190095316992t^{21} - 375246079488t^{20} - 787829317632t^{19} - 1697577854976t^{18} - 3094579814400t^{17} - 4053122330112t^{16} - 3030202220544t^{15} + 355184123904t^{14} + 4076722814976t^{13} + 5345880809472t^{12} + 3577847611392t^{11} + 770395373568t^{10} - 974770274304t^{9} - 1266722979840t^{8} - 866659074048t^{7} - 440531288064t^{6} - 183614570496t^{5} - 62395121664t^{4} - 16024338432t^{3} - 2788687872t^{2} - 283115520t - 12386304\] \[B(t) = -918t^{48} - 28512t^{47} - 222912t^{46} + 2403648t^{45} + 57788640t^{44} + 371952000t^{43} - 833317632t^{42} - 31569585408t^{41} - 248514630336t^{40} - 843453319680t^{39} + 2101305203712t^{38} + 47805188041728t^{37} + 359010401637888t^{36} + 1833245944621056t^{35} + 7066909877760000t^{34} + 20756908241178624t^{33} + 43739276560233984t^{32} + 49053453009960960t^{31} - 63180001798225920t^{30} - 489459682266808320t^{29} - 1422505823720325120t^{28} - 2772097602494201856t^{27} - 3905829301768814592t^{26} - 3838006907502723072t^{25} - 2001035405994393600t^{24} + 1052720510068850688t^{23} + 3914126315685937152t^{22} + 5412319688935342080t^{21} + 5306570353426563072t^{20} + 3922969766893977600t^{19} + 1612418743976067072t^{18} - 1077987637582626816t^{17} - 3121731360134922240t^{16} - 3569569567315329024t^{15} - 2450904811265064960t^{14} - 778430446093467648t^{13} + 395078547957350400t^{12} + 740449871814721536t^{11} + 564186735307653120t^{10} + 282303556013260800t^{9} + 98734905835388928t^{8} + 22914840196546560t^{7} + 2500883958988800t^{6} - 423303453868032t^{5} - 252507334901760t^{4} - 55883832754176t^{3} - 7066563379200t^{2} - 500095254528t - 15401484288\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 2x - 2$, with conductor $128$ | |||||||||||||||
Generic density of odd order reductions | $1461347/5505024$ |