Curve name | $X_{239}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 27 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 29 & 29 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 31 & 0 \\ 2 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{123}$ | |||||||||||||||
Curves that $X_{239}$ minimally covers | $X_{123}$ | |||||||||||||||
Curves that minimally cover $X_{239}$ | $X_{239a}$, $X_{239b}$, $X_{239c}$, $X_{239d}$ | |||||||||||||||
Curves that minimally cover $X_{239}$ and have infinitely many rational points. | $X_{239a}$, $X_{239b}$, $X_{239c}$, $X_{239d}$ | |||||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{239}) = \mathbb{Q}(f_{239}), f_{123} = \frac{4f_{239} + 4}{f_{239}^{2} - 2}\] | |||||||||||||||
Info about rational points | None | |||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 84x + 272$, with conductor $1152$ | |||||||||||||||
Generic density of odd order reductions | $2722915/11010048$ |