Curve name | $X_{240b}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 16 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{240}$ | |||||||||||||||
Curves that $X_{240b}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{240b}$ | ||||||||||||||||
Curves that minimally cover $X_{240b}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} + 216t^{20} - 3456t^{12} + 6480t^{8} + 3456t^{4} - 6912\] \[B(t) = -54t^{36} + 648t^{32} - 1296t^{28} - 12096t^{24} + 55728t^{20} - 5184t^{16} - 314496t^{12} + 456192t^{8} - 165888t^{4} + 221184\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 720x - 7259$, with conductor $45$ | |||||||||||||||
Generic density of odd order reductions | $299/2688$ |