Curve name | $X_{240}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{118}$ | |||||||||||||||
Curves that $X_{240}$ minimally covers | $X_{118}$ | |||||||||||||||
Curves that minimally cover $X_{240}$ | $X_{488}$, $X_{489}$, $X_{491}$, $X_{493}$, $X_{496}$, $X_{497}$, $X_{240a}$, $X_{240b}$, $X_{240c}$, $X_{240d}$, $X_{240e}$, $X_{240f}$, $X_{240g}$, $X_{240h}$, $X_{240i}$, $X_{240j}$, $X_{240k}$, $X_{240l}$, $X_{240m}$, $X_{240n}$, $X_{240o}$, $X_{240p}$ | |||||||||||||||
Curves that minimally cover $X_{240}$ and have infinitely many rational points. | $X_{240a}$, $X_{240b}$, $X_{240c}$, $X_{240d}$, $X_{240e}$, $X_{240f}$, $X_{240g}$, $X_{240h}$, $X_{240i}$, $X_{240j}$, $X_{240k}$, $X_{240l}$, $X_{240m}$, $X_{240n}$, $X_{240o}$, $X_{240p}$ | |||||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{240}) = \mathbb{Q}(f_{240}), f_{118} = f_{240}^{2}\] | |||||||||||||||
Info about rational points | None | |||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x - 64$, with conductor $735$ | |||||||||||||||
Generic density of odd order reductions | $25/224$ |