Curve name | $X_{240p}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{240}$ | |||||||||||||||
Curves that $X_{240p}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{240p}$ | ||||||||||||||||
Curves that minimally cover $X_{240p}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 864t^{20} + 13824t^{12} + 25920t^{8} - 13824t^{4} - 27648\] \[B(t) = 432t^{36} + 5184t^{32} + 10368t^{28} - 96768t^{24} - 445824t^{20} - 41472t^{16} + 2515968t^{12} + 3649536t^{8} + 1327104t^{4} + 1769472\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 33x + 11937$, with conductor $4800$ | |||||||||||||||
Generic density of odd order reductions | $109/896$ |