The modular curve $X_{243d}$

Curve name $X_{243d}$
Index $96$
Level $32$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 5 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{13h}$
$8$ $24$ $X_{36n}$
$16$ $48$ $X_{118l}$
Meaning/Special name
Chosen covering $X_{243}$
Curves that $X_{243d}$ minimally covers
Curves that minimally cover $X_{243d}$
Curves that minimally cover $X_{243d}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 432t^{8} - 432\] \[B(t) = 54t^{24} + 1620t^{16} - 5184t^{8} + 3456\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 + xy + y = x^3 + x^2 - 80x + 305$, with conductor $510$
Generic density of odd order reductions $19/336$

Back to the 2-adic image homepage.