Curve name | $X_{243}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{118}$ | |||||||||||||||
Curves that $X_{243}$ minimally covers | $X_{118}$ | |||||||||||||||
Curves that minimally cover $X_{243}$ | $X_{490}$, $X_{492}$, $X_{494}$, $X_{495}$, $X_{498}$, $X_{499}$, $X_{243a}$, $X_{243b}$, $X_{243c}$, $X_{243d}$, $X_{243e}$, $X_{243f}$, $X_{243g}$, $X_{243h}$, $X_{243i}$, $X_{243j}$, $X_{243k}$, $X_{243l}$, $X_{243m}$, $X_{243n}$, $X_{243o}$, $X_{243p}$ | |||||||||||||||
Curves that minimally cover $X_{243}$ and have infinitely many rational points. | $X_{243a}$, $X_{243b}$, $X_{243c}$, $X_{243d}$, $X_{243e}$, $X_{243f}$, $X_{243g}$, $X_{243h}$, $X_{243i}$, $X_{243j}$, $X_{243k}$, $X_{243l}$, $X_{243m}$, $X_{243n}$, $X_{243o}$, $X_{243p}$ | |||||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{243}) = \mathbb{Q}(f_{243}), f_{118} = \frac{2}{f_{243}^{2}}\] | |||||||||||||||
Info about rational points | None | |||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 720x - 8960$, with conductor $1530$ | |||||||||||||||
Generic density of odd order reductions | $25/224$ |