Curve name | $X_{243f}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 5 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{243}$ | |||||||||||||||
Curves that $X_{243f}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{243f}$ | ||||||||||||||||
Curves that minimally cover $X_{243f}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{32} + 1944t^{24} - 5292t^{16} + 5184t^{8} - 1728\] \[B(t) = 432t^{48} + 11664t^{40} - 79056t^{32} + 190512t^{24} - 220320t^{16} + 124416t^{8} - 27648\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 602920908875x - 180193548079873125$, with conductor $252150$ | |||||||||||||||
Generic density of odd order reductions | $51/448$ |