Curve name | $X_{288}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 2 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 13 & 10 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 9 & 9 \\ 2 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{91}$ | ||||||||||||
Curves that $X_{288}$ minimally covers | $X_{91}$, $X_{105}$, $X_{165}$ | ||||||||||||
Curves that minimally cover $X_{288}$ | $X_{587}$, $X_{615}$, $X_{618}$, $X_{619}$, $X_{678}$, $X_{690}$ | ||||||||||||
Curves that minimally cover $X_{288}$ and have infinitely many rational points. | |||||||||||||
Model | \[y^2 = x^3 + x^2 - 3x + 1\] | ||||||||||||
Info about rational points | $X_{288}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 1163177961056300788x - 365926510640189061755312483$, with conductor $20167985106465$ | ||||||||||||
Generic density of odd order reductions | $12833/57344$ |