| Curve name | $X_{105}$ | 
| Index | $24$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 13 & 10 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 13 & 13 \\ 2 & 3 \end{matrix}\right],
\left[ \begin{matrix} 15 & 13 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{39}$ | 
| Curves that $X_{105}$ minimally covers | $X_{39}$ | 
| Curves that minimally cover $X_{105}$ | $X_{214}$, $X_{221}$, $X_{224}$, $X_{232}$, $X_{282}$, $X_{288}$, $X_{301}$, $X_{302}$, $X_{388}$, $X_{389}$, $X_{390}$, $X_{394}$ | 
| Curves that minimally cover $X_{105}$ and have infinitely many rational 
points. | $X_{214}$, $X_{221}$, $X_{224}$, $X_{232}$, $X_{288}$, $X_{302}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{105}) = \mathbb{Q}(f_{105}), f_{39} = 
-f_{105}^{2} + 4\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 9235x + 342453$, with conductor $4606$ | 
| Generic density of odd order reductions | $85091/344064$ |