Curve name | $X_{34a}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{34}$ | |||||||||
Curves that $X_{34a}$ minimally covers | ||||||||||
Curves that minimally cover $X_{34a}$ | ||||||||||
Curves that minimally cover $X_{34a}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -432t^{8} + 2592t^{6} - 5292t^{4} + 3888t^{2} - 432\] \[B(t) = 3456t^{12} - 31104t^{10} + 110160t^{8} - 190512t^{6} + 158112t^{4} - 46656t^{2} - 3456\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 49x - 686$, with conductor $392$ | |||||||||
Generic density of odd order reductions | $643/5376$ |