Curve name | $X_{34}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{13}$ | |||||||||
Curves that $X_{34}$ minimally covers | $X_{13}$ | |||||||||
Curves that minimally cover $X_{34}$ | $X_{75}$, $X_{79}$, $X_{94}$, $X_{100}$, $X_{34a}$, $X_{34b}$, $X_{34c}$, $X_{34d}$, $X_{34e}$, $X_{34f}$, $X_{34g}$, $X_{34h}$ | |||||||||
Curves that minimally cover $X_{34}$ and have infinitely many rational points. | $X_{75}$, $X_{79}$, $X_{94}$, $X_{100}$, $X_{34a}$, $X_{34b}$, $X_{34c}$, $X_{34d}$, $X_{34e}$, $X_{34f}$, $X_{34g}$, $X_{34h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{34}) = \mathbb{Q}(f_{34}), f_{13} = 8f_{34}^{2} - 8\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 58x - 284$, with conductor $350$ | |||||||||
Generic density of odd order reductions | $513/3584$ |