Curve name | $X_{34c}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{34}$ | |||||||||
Curves that $X_{34c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{34c}$ | ||||||||||
Curves that minimally cover $X_{34c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{8} + 648t^{6} - 1323t^{4} + 972t^{2} - 108\] \[B(t) = -432t^{12} + 3888t^{10} - 13770t^{8} + 23814t^{6} - 19764t^{4} + 5832t^{2} + 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 58604x - 5460560$, with conductor $3136$ | |||||||||
Generic density of odd order reductions | $289/1792$ |