Curve name |
$X_{355}$ |
Index |
$48$ |
Level |
$32$ |
Genus |
$1$ |
Does the subgroup contain $-I$? |
Yes |
Generating matrices |
$
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 1 \\ 16 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 16 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ |
Images in lower levels |
|
Meaning/Special name |
|
Chosen covering |
$X_{118}$ |
Curves that $X_{355}$ minimally covers |
$X_{118}$ |
Curves that minimally cover $X_{355}$ |
$X_{488}$, $X_{491}$, $X_{495}$, $X_{498}$, $X_{620}$, $X_{622}$, $X_{629}$, $X_{638}$, $X_{662}$, $X_{664}$, $X_{666}$, $X_{669}$, $X_{696}$, $X_{701}$, $X_{702}$, $X_{703}$ |
Curves that minimally cover $X_{355}$ and have infinitely many rational
points. |
|
Model |
\[y^2 = x^3 - 4x\] |
Info about rational points |
Rational point | Image on the $j$-line |
$(0 : 1 : 0)$ |
\[ \infty \]
|
$(-2 : 0 : 1)$ |
\[ \infty \]
|
$(0 : 0 : 1)$ |
\[ \infty \]
|
$(2 : 0 : 1)$ |
\[ \infty \]
|
|
Comments on finding rational points |
None |
Elliptic curve whose $2$-adic image is the subgroup |
None |
Generic density of odd order reductions |
N/A |