Curve name | $X_{666}$ | ||||||||||||||||||
Index | $96$ | ||||||||||||||||||
Level | $64$ | ||||||||||||||||||
Genus | $3$ | ||||||||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 16 & 1 \end{matrix}\right]$ | ||||||||||||||||||
Images in lower levels |
|
||||||||||||||||||
Meaning/Special name | |||||||||||||||||||
Chosen covering | $X_{355}$ | ||||||||||||||||||
Curves that $X_{666}$ minimally covers | $X_{355}$ | ||||||||||||||||||
Curves that minimally cover $X_{666}$ | |||||||||||||||||||
Curves that minimally cover $X_{666}$ and have infinitely many rational points. | |||||||||||||||||||
Model | A model was not computed. This curve is covered by $X_{355}$, which only has finitely many rational points. | ||||||||||||||||||
Info about rational points | |||||||||||||||||||
Comments on finding rational points | None | ||||||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | None | ||||||||||||||||||
Generic density of odd order reductions | N/A |