Curve name | $X_{368}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $2$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 9 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 11 & 1 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{79}$ | ||||||||||||
Curves that $X_{368}$ minimally covers | $X_{79}$ | ||||||||||||
Curves that minimally cover $X_{368}$ | |||||||||||||
Curves that minimally cover $X_{368}$ and have infinitely many rational points. | |||||||||||||
Model | \[y^2 = -x^6 + 5x^4 + 5x^2 - 1\] | ||||||||||||
Info about rational points | No non-singular rational points | ||||||||||||
Comments on finding rational points | The rank of the Jacobian is 0. We use the method of Chabauty. | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | None | ||||||||||||
Generic density of odd order reductions | N/A |