Curve name | $X_{37c}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 14 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 10 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{37}$ | ||||||||||||
Curves that $X_{37c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{37c}$ | |||||||||||||
Curves that minimally cover $X_{37c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -49545216t^{12} - 191102976t^{11} - 332660736t^{10} - 353009664t^{9} - 258453504t^{8} - 138682368t^{7} - 56180736t^{6} - 17335296t^{5} - 4038336t^{4} - 689472t^{3} - 81216t^{2} - 5832t - 189\] \[B(t) = -123211874304t^{18} - 684913065984t^{17} - 1747615481856t^{16} - 2723344809984t^{15} - 2897970462720t^{14} - 2216794521600t^{13} - 1236960018432t^{12} - 488968814592t^{11} - 117252292608t^{10} + 14656536576t^{8} + 7640137728t^{7} + 2415937536t^{6} + 541209600t^{5} + 88439040t^{4} + 10388736t^{3} + 833328t^{2} + 40824t + 918\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 6633x + 210137$, with conductor $3200$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |