Curve name | $X_{37}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{9}$ | |||||||||
Curves that $X_{37}$ minimally covers | $X_{9}$, $X_{17}$, $X_{18}$ | |||||||||
Curves that minimally cover $X_{37}$ | $X_{123}$, $X_{37a}$, $X_{37b}$, $X_{37c}$, $X_{37d}$ | |||||||||
Curves that minimally cover $X_{37}$ and have infinitely many rational points. | $X_{123}$, $X_{37a}$, $X_{37b}$, $X_{37c}$, $X_{37d}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{37}) = \mathbb{Q}(f_{37}), f_{9} = \frac{8f_{37}^{2} - 1}{f_{37}^{2} + f_{37} + \frac{1}{8}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 201x + 199$, with conductor $4480$ | |||||||||
Generic density of odd order reductions | $2659/10752$ |