Curve name | $X_{37d}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{37}$ | |||||||||
Curves that $X_{37d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{37d}$ | ||||||||||
Curves that minimally cover $X_{37d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -3096576t^{8} - 8847360t^{7} - 10395648t^{6} - 6856704t^{5} - 2944512t^{4} - 857088t^{3} - 162432t^{2} - 17280t - 756\] \[B(t) = 1925185536t^{12} + 7813988352t^{11} + 13419675648t^{10} + 12669419520t^{9} + 7001800704t^{8} + 2027814912t^{7} - 253476864t^{5} - 109403136t^{4} - 24744960t^{3} - 3276288t^{2} - 238464t - 7344\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 265x - 1575$, with conductor $640$ | |||||||||
Generic density of odd order reductions | $401/1792$ |