Curve name | $X_{60}$ | ||||||
Index | $24$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | |||||||
Chosen covering | $X_{23}$ | ||||||
Curves that $X_{60}$ minimally covers | $X_{20}$, $X_{23}$, $X_{26}$, $X_{27}$ | ||||||
Curves that minimally cover $X_{60}$ | $X_{277}$, $X_{278}$, $X_{60a}$, $X_{60b}$, $X_{60c}$, $X_{60d}$ | ||||||
Curves that minimally cover $X_{60}$ and have infinitely many rational points. | $X_{60a}$, $X_{60b}$, $X_{60c}$, $X_{60d}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{60}) = \mathbb{Q}(f_{60}), f_{23} = \frac{f_{60}^{2} + \frac{1}{2}}{f_{60}}\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 117x + 918$, with conductor $360$ | ||||||
Generic density of odd order reductions | $13/84$ |