| Curve name | $X_{649}$ | 
| Index | $96$ | 
| Level | $32$ | 
| Genus | $3$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 29 & 0 \\ 4 & 1 \end{matrix}\right],
\left[ \begin{matrix} 31 & 27 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 31 & 31 \\ 2 & 1 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{323}$ | 
| Curves that $X_{649}$ minimally covers | $X_{323}$ | 
| Curves that minimally cover $X_{649}$ |  | 
| Curves that minimally cover $X_{649}$ and have infinitely many rational 
points. |  | 
| Model | \[x^4 - x^2y^2 - 2x^2z^2 - y^3z + 2yz^3 = 0\] | 
| Info about rational points | 
| Rational point | Image on the $j$-line |  
| $(-2 : -4 : 1)$ | \[\frac{777228872334890625}{60523872256}\] |  
| $(0 : 1 : 0)$ | \[ \infty \] |  
| $(0 : 0 : 1)$ | \[ \infty \] |  
| $(1 : 1 : 0)$ | \[-3375 \,\,(\text{CM by }-7)\] |  
| $(2 : -4 : 1)$ | \[\frac{777228872334890625}{60523872256}\] |  
| $(-1 : 1 : 0)$ | \[-3375 \,\,(\text{CM by }-7)\] |  | 
| Comments on finding rational points | This curve is isomorphic to $X_{619}$. | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 325630x - 71434867$, with conductor $17918$ | 
| Generic density of odd order reductions | $410657/1835008$ |