Curve name | $X_{69}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{23}$ | |||||||||
Curves that $X_{69}$ minimally covers | $X_{23}$, $X_{45}$, $X_{50}$ | |||||||||
Curves that minimally cover $X_{69}$ | $X_{250}$, $X_{251}$, $X_{252}$, $X_{258}$, $X_{262}$, $X_{277}$, $X_{319}$, $X_{320}$, $X_{321}$, $X_{322}$, $X_{323}$, $X_{324}$ | |||||||||
Curves that minimally cover $X_{69}$ and have infinitely many rational points. | $X_{320}$, $X_{323}$, $X_{324}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{69}) = \mathbb{Q}(f_{69}), f_{23} = \frac{f_{69}^{2} + 2}{f_{69}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + 529x - 20491$, with conductor $11109$ | |||||||||
Generic density of odd order reductions | $401/1792$ |