Curve name | $X_{65}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{23}$ | |||||||||
Curves that $X_{65}$ minimally covers | $X_{23}$, $X_{35}$, $X_{50}$ | |||||||||
Curves that minimally cover $X_{65}$ | $X_{251}$, $X_{261}$, $X_{317}$, $X_{318}$ | |||||||||
Curves that minimally cover $X_{65}$ and have infinitely many rational points. | $X_{318}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{65}) = \mathbb{Q}(f_{65}), f_{23} = \frac{f_{65}^{2} - 2}{f_{65}^{2} + 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 23x + 20$, with conductor $867$ | |||||||||
Generic density of odd order reductions | $401/1792$ |