Curve name | $X_{75b}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{75}$ | ||||||||||||
Curves that $X_{75b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{75b}$ | |||||||||||||
Curves that minimally cover $X_{75b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1811939328t^{16} + 13589544960t^{14} - 3737124864t^{12} - 212336640t^{10} + 117669888t^{8} - 3317760t^{6} - 912384t^{4} + 51840t^{2} - 108\] \[B(t) = 29686813949952t^{24} + 467567319711744t^{22} - 484266152558592t^{20} + 80363133075456t^{18} + 15111573995520t^{16} - 4337782751232t^{14} + 67777855488t^{10} - 3689349120t^{8} - 306561024t^{6} + 28864512t^{4} - 435456t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 330498271x + 793472964033$, with conductor $1138368$ | ||||||||||||
Generic density of odd order reductions | $335/2688$ |