Curve name | $X_{75}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{34}$ | |||||||||
Curves that $X_{75}$ minimally covers | $X_{34}$, $X_{36}$, $X_{48}$ | |||||||||
Curves that minimally cover $X_{75}$ | $X_{197}$, $X_{199}$, $X_{217}$, $X_{329}$, $X_{330}$, $X_{75a}$, $X_{75b}$, $X_{75c}$, $X_{75d}$, $X_{75e}$, $X_{75f}$, $X_{75g}$, $X_{75h}$, $X_{75i}$, $X_{75j}$ | |||||||||
Curves that minimally cover $X_{75}$ and have infinitely many rational points. | $X_{197}$, $X_{199}$, $X_{217}$, $X_{75a}$, $X_{75b}$, $X_{75c}$, $X_{75d}$, $X_{75e}$, $X_{75f}$, $X_{75g}$, $X_{75h}$, $X_{75i}$, $X_{75j}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{75}) = \mathbb{Q}(f_{75}), f_{34} = \frac{f_{75}}{f_{75}^{2} + \frac{1}{8}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 125421x + 5866702$, with conductor $5544$ | |||||||||
Generic density of odd order reductions | $643/5376$ |