Curve name | $X_{75c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{75}$ | ||||||||||||
Curves that $X_{75c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{75c}$ | |||||||||||||
Curves that minimally cover $X_{75c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7077888t^{12} + 51314688t^{10} - 1658880t^{8} - 2045952t^{6} - 25920t^{4} + 12528t^{2} - 27\] \[B(t) = 7247757312t^{18} + 116870086656t^{16} - 74742497280t^{14} - 13872660480t^{12} + 2218917888t^{10} + 277364736t^{8} - 27095040t^{6} - 2280960t^{4} + 55728t^{2} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 3484077x + 2577412978$, with conductor $16560$ | ||||||||||||
Generic density of odd order reductions | $635/5376$ |