Curve name | $X_{75d}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{75}$ | ||||||||||||
Curves that $X_{75d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{75d}$ | |||||||||||||
Curves that minimally cover $X_{75d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{16} + 3397386240t^{14} - 934281216t^{12} - 53084160t^{10} + 29417472t^{8} - 829440t^{6} - 228096t^{4} + 12960t^{2} - 27\] \[B(t) = 3710851743744t^{24} + 58445914963968t^{22} - 60533269069824t^{20} + 10045391634432t^{18} + 1888946749440t^{16} - 542222843904t^{14} + 8472231936t^{10} - 461168640t^{8} - 38320128t^{6} + 3608064t^{4} - 54432t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 82624568x - 99225432788$, with conductor $142296$ | ||||||||||||
Generic density of odd order reductions | $307/2688$ |