Curve name | $X_{75h}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{75}$ | |||||||||
Curves that $X_{75h}$ minimally covers | ||||||||||
Curves that minimally cover $X_{75h}$ | ||||||||||
Curves that minimally cover $X_{75h}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7077888t^{12} + 54853632t^{10} - 28200960t^{8} + 5363712t^{6} - 440640t^{4} + 13392t^{2} - 27\] \[B(t) = -7247757312t^{18} - 111434268672t^{16} + 160356630528t^{14} - 74516004864t^{12} + 16955080704t^{10} - 2119385088t^{8} + 145539072t^{6} - 4893696t^{4} + 53136t^{2} + 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 682848x - 74301228$, with conductor $25872$ | |||||||||
Generic density of odd order reductions | $193/1792$ |