Curve name | $X_{78b}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{78}$ | ||||||||||||
Curves that $X_{78b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{78b}$ | |||||||||||||
Curves that minimally cover $X_{78b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 3132t^{10} - 1620t^{8} + 31968t^{6} - 6480t^{4} - 50112t^{2} - 1728\] \[B(t) = 54t^{18} - 13932t^{16} - 142560t^{14} + 423360t^{12} + 1083456t^{10} - 2166912t^{8} - 3386880t^{6} + 4561920t^{4} + 1783296t^{2} - 27648\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 2315952x - 1356051852$, with conductor $25872$ | ||||||||||||
Generic density of odd order reductions | $193/1792$ |