Curve name | $X_{78}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{33}$ | |||||||||
Curves that $X_{78}$ minimally covers | $X_{33}$, $X_{36}$, $X_{44}$ | |||||||||
Curves that minimally cover $X_{78}$ | $X_{201}$, $X_{202}$, $X_{233}$, $X_{234}$, $X_{331}$, $X_{332}$, $X_{78a}$, $X_{78b}$, $X_{78c}$, $X_{78d}$, $X_{78e}$, $X_{78f}$, $X_{78g}$, $X_{78h}$, $X_{78i}$, $X_{78j}$ | |||||||||
Curves that minimally cover $X_{78}$ and have infinitely many rational points. | $X_{202}$, $X_{233}$, $X_{234}$, $X_{78a}$, $X_{78b}$, $X_{78c}$, $X_{78d}$, $X_{78e}$, $X_{78f}$, $X_{78g}$, $X_{78h}$, $X_{78i}$, $X_{78j}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{78}) = \mathbb{Q}(f_{78}), f_{33} = \frac{8f_{78}}{f_{78}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 425379x + 106683838$, with conductor $5544$ | |||||||||
Generic density of odd order reductions | $643/5376$ |