Curve name | $X_{78c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{78}$ | ||||||||||||
Curves that $X_{78c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{78c}$ | |||||||||||||
Curves that minimally cover $X_{78c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 12960t^{14} - 57024t^{12} + 51840t^{10} + 459648t^{8} + 207360t^{6} - 912384t^{4} - 829440t^{2} - 27648\] \[B(t) = 432t^{24} - 108864t^{22} - 1804032t^{20} - 4790016t^{18} + 14411520t^{16} + 66189312t^{14} - 264757248t^{10} - 230584320t^{8} + 306561024t^{6} + 461832192t^{4} + 111476736t^{2} - 1769472\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 1120920929x - 14431393673985$, with conductor $1138368$ | ||||||||||||
Generic density of odd order reductions | $335/2688$ |