Curve name | $X_{78d}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{78}$ | ||||||||||||
Curves that $X_{78d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{78d}$ | |||||||||||||
Curves that minimally cover $X_{78d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 3240t^{14} - 14256t^{12} + 12960t^{10} + 114912t^{8} + 51840t^{6} - 228096t^{4} - 207360t^{2} - 6912\] \[B(t) = 54t^{24} - 13608t^{22} - 225504t^{20} - 598752t^{18} + 1801440t^{16} + 8273664t^{14} - 33094656t^{10} - 28823040t^{8} + 38320128t^{6} + 57729024t^{4} + 13934592t^{2} - 221184\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 280230232x - 1803784094132$, with conductor $142296$ | ||||||||||||
Generic density of odd order reductions | $307/2688$ |