Curve name | $X_{78f}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{78}$ | |||||||||
Curves that $X_{78f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{78f}$ | ||||||||||
Curves that minimally cover $X_{78f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 3348t^{10} - 27540t^{8} - 83808t^{6} - 110160t^{4} - 53568t^{2} - 1728\] \[B(t) = 54t^{18} - 13284t^{16} - 305856t^{14} - 2274048t^{12} - 8278848t^{10} - 16557696t^{8} - 18192384t^{6} - 9787392t^{4} - 1700352t^{2} + 27648\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 7837923x - 8148740222$, with conductor $16560$ | |||||||||
Generic density of odd order reductions | $635/5376$ |