Curve name | $X_{78j}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{78}$ | |||||||||
Curves that $X_{78j}$ minimally covers | ||||||||||
Curves that minimally cover $X_{78j}$ | ||||||||||
Curves that minimally cover $X_{78j}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{8} - 3240t^{6} - 14472t^{4} - 12960t^{2} - 432\] \[B(t) = -54t^{12} + 13608t^{10} + 224856t^{8} + 762048t^{6} + 899424t^{4} + 217728t^{2} - 3456\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 47264x + 3967008$, with conductor $3696$ | |||||||||
Generic density of odd order reductions | $65/896$ |